
Tag des Systems Engineering 2016

 1 Copyright © 2016 Oskar v. Dungern, adesso AG. Zur Veröffentlichung und Nutzung
durch GfSE und die mit ihr verbundenen Organisationen freigegeben.

Semantic Model Integration for System Specification

Creating a Common Context for Different Model Types

Oskar von Dungern

adesso AG, Rotherstrasse 19, 10245 Berlin, oskar.dungern@adesso.de

Abstract: Models from different methods and tools are integrated semantically. An

integration model represents certain aspects of interest found in the individual

models. It is built with the fundamental entities Event, Actor and State. Sharing
entities between models improves coherence and interrelating entities adds semantic

value. Some formal rigor and a common vocabulary helps getting insight and allows

for automated checking. The resulting semantic net can be validated in terms of

quality mre easily before the system is realized.

1. Introduction

The following goals are taken from a request for proposal recently issued by a well known

car manufacturer:

 Create a common documentation site for business processes, IT applications, IT

infrastructure and corporate standards – which are confined to individual tools,

so far.

 Provide capability for cross-model navigation and search: Navigate along

semantic relationships and find functions, application modules and/or

requirements – independently of the authoring tool.

 Improve collaboration of different departments and enhance completeness and

consistency, thus quality of the models.

 For feedback, let users comment on any diagram or requirement seen – establish

an agreement process between stakeholders using a common platform.

 Offer an integrated requirement management related to system components

and/or process steps.

 For better traceability, keep concepts and requirements in a “single-source-of-

truth” – used as reference by derived work-products such as tasks or testcases.

The paper shows how individual models can be mapped to a common information model.

Certainly, the mapping of individual models to an abstract model is hard work. The gain

in semantic value and conceptual insight, however, is worth the effort.

2. The Problems of Model-based System Specification

A thorough analysis of popular modelling techniques regarding semantic value is still

missing. To our observation the graphical representation is emphasized, while little

attention is given to semantics and the logic interdependency between diagram types. The

Tag des Systems Engineering 2016

2

more elements are found in a toolbox and the more entries are offered in dropdown lists,

the more difficult it is to make an unambiguous choice. The specification on SysML

[Omg12], for example, distinguishes 163 named graphical node types, 22 data types, 211

metaclasses and 25 stereotypes. The authors state that the “Use of more formal constraints

and semantics may be applied in future versions to further increase the precision of the

language” [Omg12, p.19].

Standards such as XMI [Omg13] have been developed to transfer models from one tool to

another, but in practice such interchange is rarely successful.

Semantic vagueness leaves the attribution of meaning at the discretion of tool-makers and

users. The value for communicating concepts is diminished, as interpretation differs

between modelers and readers – further explanation is required.

3. SpecIF Meta-model

Before discussing domain-specific aspects of model integration, a suitable meta-model is

proposed, called Specification Integration Facility (SpecIF). A similar meta-model has

been applied and proven in various projects; it may be improved with future practical

experience.

The major design-goals are:

 Technology-neutral to allow for system interoperability and innovation.

 Dynamic model for adaption and extrension in a specific project context.

 Sufficiently simple to be fully implemented in the respective tools.

Similarly to UML, the SpecIF meta-model is defined in terms of the OMG MetaObject

Facility (MOF) [Omg15]. In fig. 1 on the next page, all elements shown as a box are

instances of ‚Class‘, while all connectors are instances of ‚Association‘ where

‚Association Ends‘ define the characteristics at each end, most importantly direction and

multiplicity.

The meta-model defines both the types (fig. 1 to the left) and the instances thereof (fig. 1

to the right) for building system models:

 ObjectType and Object are used for diagrams and model elements, such as an

activity diagram, a system component or a requirement.

 RelationType and Relation are used for logical relations between Objects, such

as a system component satisfies a requirement. All relations are bilateral and

directed. This allows for assertions according to first order predicate logic. They

can be easily mapped to many technologies such as ReqIF and OSLC/RDF.

 HierarchyType and Hierarchy are used for the root of a tree whose leaves point

to an Object each. Thus, Hierarchies with their Nodes define a logical order of

Objects, such as a bill of material (BoM) or a document outline. A given Object

may be referenced by none, one or multiple Nodes in one or more Hierarchies.

Tag des Systems Engineering 2016

 3

 A DataType may be defined based on any of the data types known from UML.

In addition, some parameters defining the value range are available, such as

minimum and maximum value of an integer or real number, the accuracy of a

real number, a string length or a set of enumerated values.

 Every ObjectType, RelationType and HierarchyType can have an individual set

of AttributeTypes, each of which is uniquely defined by a DataType. For

example, a requirement might have three AttributesTypes, such as a „Title“ with

DataType „String of max. length 96“, a „Description“ with DataType „XHTML

of max. length 8192“ and a „Priority“ with DataType „Enumeration with a single-

choice of [„1_high“, „2_medium“, „3_low“]“.

 An Object, Relation or Hierarchy is an instance of an ObjectType, RelationType

or HierarchyType respectively. Each instance usually has a set of Attributes (i.e.

values) corresponding with the AttributeTypes of its type.

Fig. 1: The SpecIF meta-model derived from the OMG meta-object facility (MOF).

The meta-model consisting of types and instances allows us to dynamically define object

and relation types with their attribute types at runtime. Also, when a system model is

interchanged between tools, the type information is included. This concept is very similar

to the ReqIF meta-model [Omg11]. In a subsequent chapter we will see which concrete

types are proposed for SpecIF.

Tag des Systems Engineering 2016

4

4. Model Integration

Few methods span all needed aspects of a complex system. In large organizations, business

process management, IT architecture management and requirement management, all being

recognized fields of specialization and expertise, use different methods and tools. The fact

is equally apparent in mechatronic system development, where mechanical, electrical and

software engineers are designing a common system with their respective methods. Design

alternatives should be discussed and weighted in a common effort of all disciplines. But

how to document the results? An overarching modelling approach is needed: Different

models must be semantically integrated.

It is no viable approach to ask all stakeholders to use the same method or even the same

tool. Our approach keeps the proven methods and tools for the different disciplines: A

team may choose the most beneficial method and tool – without compromise.

Added value is created by setting the results of ‚any’ modelling effort into a common

context. So far disparate models shall be semantically integrated in certain aspects of

interest. Specific model elements are mapped to abstract ones in the integration model. By

exploring the results in a common context it is possible to get insight into mutual

dependencies and to uncover inconsistencies.

We propose a rather simple approach to comprehensively represent system specifications,

which is being used successfully in several industry projects. The following steps are taken

towards model integration:

1. Separate View and Model

2. Abstract Model Element Types

3. Share Model Elements between Views

4. Interrelate Model Elements

Separate View and Model

First, let us distinguish between ‘View’ and ‘Model’ in the domain of system specification:

 A Model is a (simplified) representation of a system in focus. Conceptual models

are used to help us know, understand, or simulate the subject matter they

represent.

 A View exposes a selective aspect of the model to a target audience and with a

communication purpose. Well known and comprehensible diagram types shall be

used.

In other words, a model diagram is not a Model. A Model is the logic behind, where a

‚good‘ Model is comprehensive, coherent and interrelates the Views. In practice how-

ever, it is no trivial task to identify common model elements to assure model coherence,

especially in larger teams.

Tag des Systems Engineering 2016

 5

Abstract Model Element Types

Imagine the results of different modelling techniques can be assessed side-by-side in a

common context. Which elements are conceptually the same and are comparable,

therefore? How to identify the same entities in different model views?

A variety of graphical notations and model element types is used in different methods.

There are many conceptual similarities, though. Based on the Fundamental Modelling

Concepts [Knö05] and considering widely used model elements in system specification,

the following abstract model element types (ObjectTypes) are proposed for SpecIF:

 A ▣ View is a model diagram with a specific communication purpose, e.g. a

business process or system composition.

 An ■ Actor is a fundamental model element type representing an active entity,

be it an activity, a process step, a function, a system component or a user role.

 A ● State is a fundamental model element type representing a passive entity, be

it a value, an information store, even a color or shape.

 An ♦ Event is a fundamental model element type representing a time reference,

a change in condition/value or more generally a synchronisation primitive.

 A ✶ Feature is an intentional distinguishing characteristic of a system, often a

so-called ‘Unique Selling Proposition’.

 A ↯ Requirement is a singular documented physical and functional need that a

particular design, product or process must be able to perform.

Initially, the following widely used modelling techniques are considered:

 A Business Process, often using BPMN or EPK notation, is built using Events,

Process Steps represented by Actors plus documents or messages represented by

States.

 A System Composition, for example in SysML, UML or FMC notation,

illustrates the system structure with its components and communication channels.

System components are often distinguished according to their ‘processing’ and

‘storing’ nature, thus may be mapped to Actors and States. A communication

channel is considered a State, because it transmits information from one Actor to

another – conceptually it is irrelevant whether they communicate using messages

or a database, for example.

 An entity-relationship diagram or UML class diagram details the information

from business objects to database records and defines their relations. It is all about

States.

 A finite State Machine consists of States and Transitions, where the latter are

considered Actors.

 There are many other useful model types, for example Petri Net or User Interface

Mockup. All of these may just as well be mapped to the proposed abstract entities.

 A tree (hierarchical list) may reference any model element, plus any diagram.

Widely used are Feature List, Bill of Material or Part Breakdown. And obviously

the outline of the system specification document itself is a tree, as well.

Tag des Systems Engineering 2016

6

When using this convention, it is impossible (and not even desirable) to map all details of

a specific model to the integration model. On the abstract level, only those model elements

and relations are of interest which are common to different methods and lend themselves

for sharing and interrelating.

Share Model Elements

Employing just a few fundamental model element types lets us share entites between

diagrams. Fig. 2 and fig. 3 shall be interpreted in terms of the SpecIF meta-model: The

boxes represent ObjectTypes and the connectors represent RelationTypes. Fig. 2 shows

four ObjectTypes used for views at the top and three ObjectTypes used for model-elements

at the bottom.

Fig. 2: SpecIF system model derived from the SpecIF meta-model

with interrelated ObjectTypes used for diagrams and model-elements

Also, eight RelationTypes, all named shows, between specific diagram types and specific

model-element types are visible. Of course, certain constaints apply. Depending on the

diagram type, different model elements are allowed:

 A state-machine diagram may show Events and Actors.

 A process diagram (often SysML Activity Diagram or BPMN) may show

Events, Actors and States.

 A composition diagram may show Actors and States.

 A class diagram (often UML/SysML) or an entity-relationship diagram (Chen)

may just show States.

Interpreted in a different way, we see which model element types may be shared by

which diagram types:

 An Actor may be employed both by Processes and Compositions.

 A State may be used by Processes, Compositions and Classes.

Tag des Systems Engineering 2016

 7

 An Event may be shared between Processes and State-machines.

Sharing model elements between views means to reuse existing Object instances when

creating a view (a priori) or to consolidate those which are actually the same (a posteriori).

A model-element appearing in very few views only is a potential ‘loose end’ and candidate

for consolidation with others. If multiple instances of the same model element are found

in federated repositories, they are tied together with a sameAs relation.

Interrelate Model Elements

Fig. 3: ObjectTypes and RelationTypes derived from the SpecIF meta-model

The model elements may be connected with relations, thus contributing to the semantic

value of the specification model. Fig. 3 shows the most important ObjectTypes and

RelationTypes of a SpecIF integration model:

 An Actor writes a State: In a system composition a function writes a value.

 An Actor reads a State.

 An Actor contains an Actor: In a process a role is responsible for a process step.

In a system composition a component is part of another or a component has a

function.

 An Actor may also contain a State as well as an Event.

 A State may contain an Actor or a State.

 An Actor, representing a system component or function, satisfies a Requirement.

 A Requirement contradicts or dependsOn a Requirement.

 An Actor implements a Feature.

Tag des Systems Engineering 2016

8

 A Feature excludes or includes a Feature.

 An Actor follows an Actor: In a Process a process step follows a process step in

a control flow.

 An Event triggers an Actor: A process step is initiated when an event occurs.

 An Actor signals an Event.

The system model in consideration, the concrete project data, is represented by Objects

and Relations being instances of the ObjectTypes and RelationTypes shown in fig. 3.

Many Relations can be derived from the model diagrams. For example, if a system compo-

nent is drawn within another, a relation contains may be automatically created. Other

Relations, such as a System Component satisfies a requirement, must be created manually.

To maintain consistency of the model, logical constraints are applied. For example, when

creating a new block on a diagram, only those are offered for reuse which have the same

abstract model-element type. The resulting model structure can be logically analyzed, for

example to discover events which are signalled, but never used to trigger anything.

Similarly it can be checked, whether every transition in a state machine has a

corresponding activity. Thus, completeness and consistency can be analyzed for quality

assurance.

5. Example

The mapping of a SysML diagram to SpecIF is shown as an example. Consider the simple

activity diagram in fig. 4, where two devices implement an anti-lock brake (ABS).

The relevant logical content is captured with the following SpecIF mapping:

Model element
(Object instance)

SysML type
SpecIF
meta-type

SpecIF type Description

PreventLockup
Activity
diagram

ObjectType Process
This SysML model diagram is a ▣ View

with link to the original diagram as SVG,
PNG or similar.

TractionDetector Activity
partition

ObjectType FMC:Actor A SysML activity partition is an ■ Actor.
BrakeModulator

DetectLossOfTraction
Activity ObjectType FMC:Actor A SysML activity is an ■ Actor.

ModulateBrake

TractionLoss Object ObjectType FMC:State A SysML object is a ● State

 Initial node ObjectType FMC:Event A SysML initial node is an ♦ Event

 Final node ObjectType FMC:Event A SysML final node is an ♦ Event

 RelationType shows
Relates a ▣ View and a shown model-

element (Object) of type FMC:Actor,
FMC:State or FMC:Event.

Tag des Systems Engineering 2016

 9

 Relation Type contains
Relates an activity partition of type
FMC:Actor with a contained activity of
type FMC:Actor.

 Control flow RelationType follows
Relates an activity of type FMC:Actor
with the subsequent activity of type
FMC:Actor.

Fig. 4: An example activity diagram in SysML notation (left)

and the corresponding SpecIF model (right).

6. Benefits

Once the views are integrated by shared or related model-elements, it is much easier to

check and analyse the overall concept:

 Is every process step covered by a role?

 Are adequate system functions allocated to a process step?

 Which system functions are actually used by which process? And which ones are

not (any more) used at all?

 Are there defined activities for every transition in a State-machine?

 Have all roles access to the required systems?

 How many systems are involved in a process?

 Does a system support a process seamlessly or is there any ‘hand-carried’ data?

When relating the Requirements to System Components or Process Steps, additional

insight is obtained. It is very difficult, if not impossible to assess a list of many hundred

requirements in terms of completeness, consistence, feasibility and other quality criteria.

Tag des Systems Engineering 2016

10

But when requirements are distributed among system components, the system

composition acts as a map giving rise to useful cross-checks:

 Have certain components none or too few requirements to be fully understood by

a developer? The questions of a developer may lead to further requirements

collection or elicitation.

 Is the set of requirements applying to a system component consistent – or are

there any contradictory statements?

 Which requirements cause excessive effort?

 Are there any requirements which cannot be attributed to a system component

and may thus not be satisfied?

These questions are only some examples. Interrelating model elements really helps in

getting insight and in checking the model quality. In real projects, the approach has shown

to stimulate discussions between experts of different background. Many interesting

aspects are brought up long before the development work starts.

Literature

[Wen01] Wendt, S.: Ein grundlegender Begriffsrahmen für das Wissensmanagement im Software-

Engineering. In Proceedings „Knowtech“ Dresden 2001. http://www.community-of-
knowledge.de/fileadmin/user_upload/attachments/f25.pdf.

[Knö05] Knöpfel, A.; Gröne, B.; Tabeling, P.: Fundamental Modelling Concepts – Effective

Communication of IT Systems. ISBN-13: 978-0-470-02710-3. John Wiley & Sons,

Chichester, 2005.
[Poh11] Pohl, K.; Rupp, Ch.: Basiswissen Requirements Engineering. ISBN 978-3-89864-771-7.

dpunkt.verlag, Heidelberg, 2011.

[Omg11] Object Management Group: Requirements Interchange Format (ReqIF).
http://www.omg.org/spec/ReqIF/

[Omg12] Object Management Group: OMG Systems Modeling Language (SysML™), Version 1.3,

http://www.omg.org/spec/SysML/1.3/, June 2012.

[Omg14] Object Management Group: XML Metadata Interchange (XMI) Specification,
http://www.omg.org/spec/XMI/

[Omg15] Object Management Group: MetaObject Facility (MOF) Specification,

http://www.omg.org/spec/MOF/

[Kau15] Kaufmann, U., Pfenning, M.: 10 Theses about MBSE and PLM,
http://gfse.de/Dokumente_Mitglieder/ag_ergebnisse/PLM4MBSE/PLM4MBSE_Position

_paper_V_1_1.pdf

[Dun15] Dungern, O.v.: Integration von Systemmodellen mit fünf fundamentalen Elementtypen.

TdSE Tag des Systems Engineering der GfSE, Ulm, November 2015.
http://enso-managers.de/files/resources/enso-m/documents-de/TdSE-

2015_Dungern_Modellintegration-mit-fuenf-fundamentalen-Elementtypen_(Text).pdf

http://www.community-of-knowledge.de/fileadmin/user_upload/attachments/f25.pdf
http://www.community-of-knowledge.de/fileadmin/user_upload/attachments/f25.pdf
http://www.omg.org/spec/ReqIF/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/MOF/
http://gfse.de/Dokumente_Mitglieder/ag_ergebnisse/PLM4MBSE/PLM4MBSE_Position_paper_V_1_1.pdf
http://gfse.de/Dokumente_Mitglieder/ag_ergebnisse/PLM4MBSE/PLM4MBSE_Position_paper_V_1_1.pdf
http://enso-managers.de/files/resources/enso-m/documents-de/TdSE-2015_Dungern_Modellintegration-mit-fuenf-fundamentalen-Elementtypen_(Text).pdf
http://enso-managers.de/files/resources/enso-m/documents-de/TdSE-2015_Dungern_Modellintegration-mit-fuenf-fundamentalen-Elementtypen_(Text).pdf

